
Usage assumptions and
restrictions:

+ All Subscriptions within an
Aeron client instance use the
same Aeron Selector, with a 1:1
mapping between client and
selector instances.

+ All Subscriptions and Images
using an Aeron Selector share
the same application thread for
data availability notifications
and processing.

+ Aeron Selector is not thread-
safe nor designed to be called
from multiple threads.

+ Aeron Selector may introduce
some latency.

Aeron’s approach of continuous CPU polling and
immediate message processing sets the standard for
high-performance messaging. However, continuous
CPU usage can present a challenge for applications
with less frequent workloads. Despite their sporadic
activity, these applications persistently consume CPU
resources by continuously polling for work.

Technical Details

Optimizing CPU Utilization

Aeron Transport Selector

• Available as an Aeron
Premium feature.

• Supported in the Aeron C
and Java driver.

• Compatible with Linux
(Ubuntu, RedHat).

• Supports C/C++ & Java clients.

Operational
Considerations

Adaptive builds & operates bespoke trading technology solutions across asset classes for financial
services firms wanting to own their tech stack to differentiate and compete in the long-term. Central
to Adaptive’s offering is Aeron, the global standard for high-throughput, low-latency and fault-tolerant
trading systems - the open-source technology supported and sponsored by Adaptive.

AERON GITHUB
COMMUNITY

aeron.io / info@aeron.io / weareadaptive.com

Aeron Transport Selector enables applications to enter a 'sleep' mode when
there are no pending messages in their subscriptions, thereby saving the
CPU from spinning and wasting CPU cycles. The application is 'woken up' for
processing by the OS, as soon as a new message arrives. Although this may
cause a minor latency, it's a reasonable compromise for applications with
low data rates, particularly when there are multiple application subscriptions.
The Aeron Selector provides a more resource-efficient and cost-effective
solution for managing data in low-activity applications.

Introducing Aeron Transport Selector

+ Save CPU cycles by eliminating the need for constant CPU polling.

+ Enhance the efficiency of data processing by performing reads on a set of
subscriptions within a specified timeout.

+ Take a tailored approach to resource management
The Aeron client can be instantiated multiple times within the application,
allowing for a mix of streams—some using the selector client and others
not—to optimize latency.

AeronSelector consists of two major components:

1. AeronSelector Daemon: A single-threaded application daemon that uses
the Aeron C API to determine if Subscriptions and Images have data to read,
communicating with all of AeronSelector APIs in use for the specified Aeron
media driver.

2. AeronSelector API: A language-specific API for interacting with the
AeronSelector daemon to determine whether data is ready to be read
and processed.

