
Aeron.io 1Aeron AWS Performance Testing

Step-by-Step guide to
benchmarking Aeron in
your AWS environment.

aeron.io

AW
S

Pe
rf

or
m

an
ce

 T
es

tin
g

Aeron.io 2Aeron AWS Performance Testing

Table of Contents

01 Introduction

02 What is Aeron?

03 Why Aeron?
 A. Aeron Message Transport: Data Transport and Reliable Dissemination

 - The Challenges
 - The Solution

 B. Aeron Cluster: Sequenced, persisted, and highly-available, in the cloud

 - The Challenges
 - The Solution

04 Benchmarking Aeron
 A. Aeron Transport - The latency of a round trip without persistence

 i. Test Setup
 1. Technical Set-up - Prerequisites
 2. Technical Set-up Instructions
 ii. Test Results - Summary
 iii. Test Results - Detailed

 B. Aeron Cluster - High-throughput and low-latency with high-availability
 i. Test Setup 1: Cluster Placement Group - a set-up optimized for performance
 1. Technical Set-up - Prerequisites
 2. Technical Set-up Instructions
 ii. Test Results - Summary
 iii. Test Results - Detailed

05 Testing Resources

Appendix - Further Aeron Cluster Testing
 i. Test Set-up 2: Partition Placement Group - a set-up optimized for redundancy
 ii. Test Results - Summary
 ii. Test Results - Detailed

Aeron.io 3Aeron AWS Performance Testing

01 Introduction
The Aeron team at Adaptive and Amazon Web Services (AWS) have published Aeron benchmark results
to demonstrate the performance that can be achieved running Aeron on AWS.

This paper provides technical instructions on how to set up and run performance tests with Aeron. It
also includes detailed results from our own performance tests, which can give you an idea of what to
expect from your own testing.

Detailed latency and throughput results are below. In summary, Aeron Premium is almost 500 times
faster at the 99th percentile than other commonly used messaging protocols for data transport and
almost 60 times faster for end-to-end encrypted transport than other commonly used encryption
protocols. For clustered state replication, Aeron Premium halves latency while achieving up to 8x
throughput compared to Aeron Open Source.

02 What is Aeron?
Aeron is the cloud-native, open-source, low-latency message transport and cluster technology
developed by Adaptive and used by financial services firms globally to build sophisticated high-
performance trading systems. Adaptive has worked with AWS since 2014, using its cloud-based
technology to run Aeron to deploy purpose-built trading solutions for financial institutions.

Aeron consists of Aeron Transport for messaging, and Aeron Cluster for sequenced, persisted, state
replication. Aeron Premium, from Adaptive, provides an additional set of components to enhance
performance, security and resilience.

03 Why Aeron?
Aeron Transport and Aeron Cluster solve two key pain points for Capital Markets systems in the cloud.

 1. Performance: Low-latency, high-throughput data transport, and dissemination

 2. High-availability: 24/7 ‘always on’ systems which are fault tolerant

Aeron.io 4Aeron AWS Performance Testing

A. Aeron Transport: Data Transport
 and Reliable Dissemination
The Challenges:
Reliably moving data at predictable, low latencies is fundamental to any system involved in low-latency,
high-frequency markets. Data needs to be moved from one machine to many others - market data
distribution is a common example of this. Hardware-based multicast solutions solved this problem
for capital markets businesses before the cloud. Multicast in the cloud requires, unfortunately, a
compromise in performance.

The Solution:
Aeron Transport is able to reliably and predictably transport data across IPC (inter-process
communication) and local and wide area networks. It adds minimal overhead to the latency of the
underlying network, while providing flow and congestion control built for today’s multi-tenant high
capacity networks.

Aeron Transport is especially well-suited to message transport in the cloud, with features such as:

 ▪ UDP-based messaging with capital markets-tuned flow and congestion-control algorithms

 ▪ Multi-destination cast, which provides a high throughput multicast-like pattern for the cloud

 ▪ DPDK kernel bypass, which provides blazing fast network throughput rates and low latencies, by
directly accessing the underlying physical network card

 ▪ Natural batching, which enables asynchronous message passing to reach incredibly high
throughput.

These features come together to allow Aeron Transport to transmit data reliably and at extremely fast
rates on AWS.

For durable messaging, Aeron Archive records, writes and replays to storage. This enables users
to create fast, complex messaging topologies tuned for their requirements, including large-scale,
reliable, market data distribution.

B. Aeron Cluster: Sequenced,
 persisted, and highly-available,
 in the cloud
The Challenges:
Traditional cloud approaches to resilience require a scale-out approach, with architecture that
sacrifices consistency for availability. Capital markets systems require consistency, performance,
and sequencing, often running entire markets on one or two machines to achieve it. Incredibly short
Recovery Time Objectives (RTO) and Recovery Point Objectives (RPO) in the order of milliseconds are
common.

The Challenges:
Reliably moving data at predictable, low latencies is fundamental to any system involved in low-latency,
high-frequency markets. Data needs to be moved from one machine to many others - market data
distribution is a common example of this. Hardware-based multicast solutions solved this problem
for capital markets businesses before the cloud. Multicast in the cloud requires, unfortunately, a
compromise in performance.

The Solution:
Aeron Transport is able to reliably and predictably transport data across IPC (inter-process
communication) and local and wide area networks. It adds minimal overhead to the latency of the
underlying network, while providing flow and congestion control built for today’s multi-tenant high
capacity networks.

Aeron Transport is especially well-suited to message transport in the cloud, with features such as:

 ▪ UDP-based messaging with capital markets-tuned flow and congestion-control algorithms.

 ▪ Multi-destination cast, which provides a high throughput multicast-like pattern for the cloud.

 ▪ DPDK kernel bypass, which provides blazing fast network throughput rates and low latencies, by
directly accessing the underlying physical network card.

 ▪ Natural batching, which enables asynchronous message passing to reach incredibly high
throughput.

These features come together to allow Aeron Transport to transmit data reliably and at extremely fast
rates on AWS.

For durable messaging, Aeron Archive records, writes and replays to storage. This enables users
to create fast, complex messaging topologies tuned for their requirements, including large-scale,
reliable, market data distribution.

Aeron.io 5Aeron AWS Performance Testing

Recovering from system outages where data consistency or the ordering of transactions is required
entails extremely complex reconciliations and, ultimately, some of the costliest payouts in compen-
sation to impacted customers.

The cloud engineering paradigm, while offering fast provisioning and scalability, is also one of
ephemerality - network interfaces are patched, processes are migrated between machines, and
local storage can disappear. Solving these engineering requirements in the cloud has been thought
to be near impossible.

The Solution:
Aeron Cluster is uniquely well-suited for this paradigm. It provides developers with a resilient,
performant platform that can process over 2 million messages per second with a 99th percentile
latency of 103 microseconds (detailed results are in the following section).

When underlying cloud services are restarted or migrated, Aeron Cluster seamlessly continues ser-
vice operation with recovery in milliseconds.

This architecture enables developers to build highly-available, resilient systems with a minimum of
infrastructure and yet still achieve incredible throughput and performance. Developers concentrate
on the logic of their business domain, relying on the resilience guarantees provided by Aeron Cluster
for their RTO and RPO needs.

04 Benchmarking Aeron
Aeron on AWS delivers exceptional throughput and low latency. We’ve open-sourced the source code
of the benchmarks and published a guide so you can replicate them in your own environment.

Testing took place with a range of AWS services, including Amazon Elastic Compute Cloud (EC2)
instances, Amazon Elastic Block Store (EBS) volumes, and Amazon Elastic Compute Cloud (EC2)
Placement Groups.

To start, we tested Aeron at its lowest level, using Aeron Transport to push network throughput
and latencies to their extreme. We also tested Aeron Transport Security (ATS), an Aeron Premium
component that uses industry-standard cryptography primitives. We then tested Aeron Cluster, to
show the throughput and latency that a highly available system could achieve built on top of it.

We ran tests for both open-source Aeron and Aeron Premium. These differ only in how they access
the network card: Open-source Aeron uses BSD sockets whilst Aeron Premium uses DPDK. Aeron
DPDK kernel bypass allows applications to directly access network interfaces and hardware resources
(AWS Nitro instances make the underlying hardware available), reducing the overhead associated
with traditional kernel-based networking and thus dramatically improving messaging latency and
increasing throughput.

https://github.com/real-logic/benchmarks
https://github.com/real-logic/benchmarks
https://aws.amazon.com/ec2/
https://aws.amazon.com/ebs/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://hub.aeron.io/hubfs/Aeron-Assets/Aeron-ATS-Overview-PDF.pdf
https://doc.dpdk.org/guides/nics/ena.html

Aeron.io 6Aeron AWS Performance Testing

A. Aeron Transport - The latency of a
 round trip without persistence

We used Aeron Transport to benchmark the underlying latency and throughput when sending messages
across the AWS network. We used Amazon EC2 Cluster Placement Groups to control the proximity of
AWS instances within an AWS Availability Zone.

i. Test Setup

Figure: Aeron Transport Test Set-up in an AWS Availability Zone

To measure latency, we performed five test runs of our test case: an echo test of 100,000 288-byte
messages per second.

For throughput, we wanted to understand the maximum while still meeting a given latency budget
within an Availability Zone. We chose a latency ceiling of 1 millisecond at the 99th percentile, stopping
at throughputs that gave results above this threshold.

1. Technical Set-Up - Prerequisites

 ▪ Some provisioned VMs or machines (Get in touch if you would like to use our Aeron benchmark
infrastructure provisioning modules to help with setting this up.)

 ▪ Basic level of Linux & networking knowledge

https://aeron.io/contact/

Aeron.io 7Aeron AWS Performance Testing

2. Technical Set-up Instructions

Benchmark scripts
Running Aeron Echo benchmarks requires two virtual machines to be provisioned. For machine setup
please follow the OS setup guide.

To get started with the Aeron benchmarks do the following:
 ▪ Clone the benchmarks project:

 $ git clone https://github.com/real-logic/benchmarks aeron-benchmarks
 ▪ Build the deployment package:

 $ cd aeron-benchmarks
 $./gradlew clean deployTar
 This command will generate an archive file build/distributions/benchmarks.tar.
 This step requires JDK 8+ to be installed on the local machine. It will then download Gradle and
 all of the dependencies.

 ▪ Copy the build/distributions/benchmarks.tar file to the test machines. Typically done with the
scp command, e.g.:

 $ scp build/distributions/benchmarks.tar remote-user@remote-machine:~
 ▪ On each remote machine unpack the deployment archive.

 $ tar xf benchmarks.tar -C <destination_dir>
 ▪ On the local machine in the benchmarks project (i.e. in the ̀ aeron-benchmarks/scripts` directory)

create a new wrapper script that will run the remote benchmarks of your choice.
 For example, create a file named test-aeron-echo.sh in the scripts directory and add the
 following contents into it. NB: All the values in angle brackets (<...>) will have to be replaced
 with the actual values.

SSH connection properties
export SSH_CLIENT_USER=<SSH client machine user>
export SSH_CLIENT_KEY_FILE=<private SSH key to connect to the client machine>
export SSH_CLIENT_NODE=<IP of the client machine>
export SSH_SERVER_USER=<SSH server machine user>
export SSH_SERVER_KEY_FILE=<private SSH key to connect to the server machine>
export SSH_SERVER_NODE=<IP of the server machine>

Set of required configuration options
export CLIENT_BENCHMARKS_PATH=<directory containing the unpacked benchmarks.tar>
export CLIENT_JAVA_HOME=<path to JAVA_HOME (JDK 8+)>
export CLIENT_DRIVER_CONDUCTOR_CPU_CORE=<CPU core to pin the ‘conductor’ thread>
export CLIENT_DRIVER_SENDER_CPU_CORE=<CPU core to pin the ‘sender’ thread>
export CLIENT_DRIVER_RECEIVER_CPU_CORE=<CPU core to pin the ‘receiver’ thread>
export CLIENT_LOAD_TEST_RIG_MAIN_CPU_CORE=<CPU core to pin ‘load-test-rig’ thread>
export CLIENT_NON_ISOLATED_CPU_CORES=<a set of non-isolated CPU cores>
export CLIENT_CPU_NODE=<CPU node (socket) to run the client processes on>
export CLIENT_AERON_DPDK_GATEWAY_IPV4_ADDRESS=
export CLIENT_AERON_DPDK_LOCAL_IPV4_ADDRESS=
export CLIENT_SOURCE_CHANNEL=”aeron:udp?endpoint=<SOURCE_
IP>:13100|interface=<SOURCE_IP>/24”
export
CLIENT_DESTINATION_CHANNEL=”aeron:udp?endpoint=<DESTINATION_
IP>:13000|interface=<DESTINATION_IP>/24”
export SERVER_BENCHMARKS_PATH=<directory containing the unpacked benchmarks.tar>
export SERVER_JAVA_HOME=<path to JAVA_HOME (JDK 8+)>
export SERVER_DRIVER_CONDUCTOR_CPU_CORE=<CPU core to pin the ‘conductor’ thread>
export SERVER_DRIVER_SENDER_CPU_CORE=<CPU core to pin the ‘sender’ thread>
export SERVER_DRIVER_RECEIVER_CPU_CORE=<CPU core to pin the ‘receiver’ thread>
export SERVER_ECHO_CPU_CORE=<CPU core to pin ‘echo’ thread>
export SERVER_NON_ISOLATED_CPU_CORES=<a set of non-isolated CPU cores>
export SERVER_CPU_NODE=<CPU node (socket) to run the server processes on>
export SERVER_AERON_DPDK_GATEWAY_IPV4_ADDRESS=

Aeron.io 8Aeron AWS Performance Testing

export SERVER_AERON_DPDK_LOCAL_IPV4_ADDRESS=
export SERVER_SOURCE_CHANNEL=”${CLIENT_SOURCE_CHANNEL}”
export SERVER_DESTINATION_CHANNEL=”${CLIENT_DESTINATION_CHANNEL}”

(Optional) Overrides for the runner configuration options
#export MESSAGE_LENGTH=”288” # defaults to “32,288,1344”
#export MESSAGE_RATE=”100K” # defaults to “1M,500K,100K”

Invoke the actual script and optionally configure specific parameters
“aeron/remote-echo-benchmarks” --client-drivers “java” --server-drivers “java” --mtu
8K --context “my-test

 ▪ Run the wrapper script created in the previous step.
 $./test-aeron-echo

OS setup
We have used an Ubuntu 22.04 for running Aeron benchmarks as this was the latest Ubuntu LTS at
the time of the test and to have access to the kernel bypass networking (DPDK).

Tools
Aeron benchmark scripts require several tools to be installed:

 ▪ numactl
 ▪ jq
 ▪ lstopo
 ▪ lsb_release

On Ubuntu these can be installed with a single command:
$ sudo apt-get install numactl jq hwloc

Kernel configuration parameters
What’s required to get a stock Linux image configured to optimal latency? - This is the topic that is
well covered by external resources such as:

 ▪ The Black Magic of Systematically Reducing Linux OS Jitter by Gil Tene.
 ▪ Low latency tuning guide by Eric Rigtorp.

Here are the specific parameters that we have tuned when running the benchmarks. Usually we
create a file `/etc/sysctl.d/99-aeron-benchmarks.conf` with the following contents:

Virtual memory
vm.swappiness = 0
vm.stat_interval=120

Memory
vm.min_free_kbytes = 8388608
vm.zone_reclaim_mode = 0
kernel.numa_balancing = 0

Networking
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
net.ipv4.tcp_rmem = 4096 2097152 16777216
net.ipv4.tcp_wmem = 4096 2097152 16777216

http://highscalability.com/blog/2015/4/8/the-black-magic-of-systematically-reducing-linux-os-jitter.html
https://rigtorp.se/low-latency-guide/

Aeron.io 9Aeron AWS Performance Testing

net.ipv4.tcp_max_syn_backlog = 8192
net.ipv4.tcp_slow_start_after_idle = 0
net.ipv4.tcp_syn_retries = 2
net.ipv4.tcp_tw_reuse = 1

File System
vm.dirty_ratio = 80
vm.dirty_background_ratio = 5
vm.dirty_expire_centisecs = 12000

perf (profiling)
kernel.perf_event_paranoid = -1
kernel.kptr_restrict = 0
kernel.perf_event_max_stack = 1024
kernel.perf_event_mlock_kb = 8096

CPU core isolation
Aeron benchmark scripts pin threads to the dedicated CPU cores. To ensure that nothing else is
running on those cores it is necessary to isolate them.
To find the cores to isolate, do the following:

 ▪ Determine to which CPU node (socket) the network cards are attached.
 This can be done by running the `lstopo-no-graphics` (or `lstopo`) command which lists
 the PCI bridges after the cores of a CPU package.

 For example here is an output from the lstopo command:

Here the NICs are attached to the second socket.

 ▪ Choose the cores to isolate.

Use the CPU socket from the previous step and select a set of cores to be isolated. Aeron
benchmarks will use up to 8 CPU cores to pin the threads so at least 8 physical CPUs cores
should be isolated.

You can use the lscpu utility to find the mapping of the logical cores to the physical cores and
sockets, e.g.:

Aeron.io 10Aeron AWS Performance Testing

$ lscpu -e
CPU NODE SOCKET CORE L1d:L1i:L2:L3 ONLINE
 0 0 0 0 0:0:0:0 yes
 1 0 0 1 1:1:1:0 yes
 2 0 0 2 2:2:2:0 yes
 3 0 0 3 3:3:3:0 yes
 4 0 0 4 4:4:4:0 yes
 5 0 0 5 5:5:5:0 yes
 6 0 0 6 6:6:6:0 yes
 7 0 0 7 7:7:7:0 yes
 8 0 0 8 8:8:8:0 yes
 9 0 0 9 9:9:9:0 yes
 10 0 0 10 10:10:10:0 yes
 11 0 0 11 11:11:11:0 yes
 12 0 0 12 12:12:12:0 yes
 13 0 0 13 13:13:13:0 yes
 14 0 0 14 14:14:14:0 yes
 15 0 0 15 15:15:15:0 yes
 16 0 0 16 16:16:16:0 yes
 17 0 0 17 17:17:17:0 yes
 18 1 1 18 32:32:32:1 yes
 19 1 1 19 33:33:33:1 yes
 20 1 1 20 34:34:34:1 yes
 21 1 1 21 35:35:35:1 yes
 22 1 1 22 36:36:36:1 yes
 23 1 1 23 37:37:37:1 yes
 24 1 1 24 38:38:38:1 yes
 25 1 1 25 39:39:39:1 yes
 26 1 1 26 40:40:40:1 yes
 27 1 1 27 41:41:41:1 yes
 28 1 1 28 42:42:42:1 yes
 29 1 1 29 43:43:43:1 yes
 30 1 1 30 44:44:44:1 yes
 31 1 1 31 45:45:45:1 yes
 32 1 1 32 46:46:46:1 yes
 33 1 1 33 47:47:47:1 yes
 34 1 1 34 48:48:48:1 yes
 35 1 1 35 49:49:49:1 yes
 36 0 0 0 0:0:0:0 yes
 37 0 0 1 1:1:1:0 yes
 38 0 0 2 2:2:2:0 yes
 39 0 0 3 3:3:3:0 yes
 40 0 0 4 4:4:4:0 yes
 41 0 0 5 5:5:5:0 yes
 42 0 0 6 6:6:6:0 yes
 43 0 0 7 7:7:7:0 yes
 44 0 0 8 8:8:8:0 yes
 45 0 0 9 9:9:9:0 yes
 46 0 0 10 10:10:10:0 yes
 47 0 0 11 11:11:11:0 yes
 48 0 0 12 12:12:12:0 yes
 49 0 0 13 13:13:13:0 yes
 50 0 0 14 14:14:14:0 yes
 51 0 0 15 15:15:15:0 yes
 52 0 0 16 16:16:16:0 yes
 53 0 0 17 17:17:17:0 yes
 54 1 1 18 32:32:32:1 yes
 55 1 1 19 33:33:33:1 yes
 56 1 1 20 34:34:34:1 yes
 57 1 1 21 35:35:35:1 yes
 58 1 1 22 36:36:36:1 yes
 59 1 1 23 37:37:37:1 yes
 60 1 1 24 38:38:38:1 yes
 61 1 1 25 39:39:39:1 yes

Aeron.io 11Aeron AWS Performance Testing

 62 1 1 26 40:40:40:1 yes
 63 1 1 27 41:41:41:1 yes
 64 1 1 28 42:42:42:1 yes
 65 1 1 29 43:43:43:1 yes
 66 1 1 30 44:44:44:1 yes
 67 1 1 31 45:45:45:1 yes
 68 1 1 32 46:46:46:1 yes
 69 1 1 33 47:47:47:1 yes
 70 1 1 34 48:48:48:1 yes
 71 1 1 35 49:49:49:1 yes

Given the above output the correct list of cores to isolate would be 18-25,54-61, because we
want to isolate 8 physical cores and thus must include both hyper-threads of each core in the
isolation list.

 ▪ Isolate the cores by adding the corresponding boot options.
We then need to add these cores to the OS boot parameters (e.g. by editing the
/etc/default/grub file):

GRUB_CMDLINE_LINUX=”... isolcpus=18-25,54-61 nohz_full=18-25,54-61
rcu_nocbs=18-25,54-61”

File system options
We have used an ext4 file system for configuring the storage devices (local SSDs, EBS, EFS discs
etc.) with the following parameters:
$ sudo mount -o defaults,noatime,nodiratime,discard,nobarrier ...

The Aeron directory was placed under the `/dev/shm` which uses a tmpfs in-memory file system.

Key Aeron configuration options
Aeron scripts rely mostly on the low-latency-driver.properties and low-latency-archive.properties
files for configuring the Media Driver and the Archive respectively. However there are several
configuration options that must/can be set via the scripts as discussed below.

MTU
Aeron MTU can be configured at the media driver level (via the aeron.mtu.length and the aeron.ipc.
mtu.length configuration options) or at the channel level via the mtu URI parameter. The MTU value
controls the following:

 ▪ the size of the max network packet/IPC payload that the Aeron can send.
 ▪ the max number of bytes that can be claimed via the tryClaim API which is equal to the MTU

minus the media message header, i.e. for Aeron Transport it is `mtu - 32` and for Cluster it is
`mtu - 64` bytes. For example with the default MTU the max message size that can be sent via
transport is 1374 bytes

Aeron MTU is set by default to 1408 bytes and is therefore tailored for the network MTU of 1500
bytes. The MTU value must be aligned by (be a multiple of) 32 bytes and must be less than the
network MTU as it must accommodate for the network headers, i.e. the UDP header is 8 bytes, the
IPv4 header is 20-60 bytes/IPv6 header is 40 bytes and the Ethernet header is 18 bytes which in
total add up to 88 bytes of headers.

https://github.com/real-logic/benchmarks/blob/master/scripts/aeron/low-latency-driver.properties
https://github.com/real-logic/benchmarks/blob/master/scripts/aeron/low-latency-archive.properties
https://github.com/real-logic/aeron/blob/3f6c5e15bd30a83d46978bf39eff8d927f30fe5a/aeron-client/src/main/java/io/aeron/Publication.java#L556

Aeron.io 12Aeron AWS Performance Testing

It is important to set Aeron MTU to match the network MTU for efficiency reasons. If the Aeron
MTU is much smaller than the network MTU this will negatively affect the max throughput. And if it
is larger then the Aeron packets will be split at the network level which will increase the negative
effects of message loss.

For the jumbo frames where the NIC MTU is around 9000 set the Aeron MTU to 8KB, because
setting it to a value larger than 8KB would break channels that use the 64KB term buffers (e.g.
Archive control channel). As the term buffer length limits the max message size that can be
published to 1/8 of the term buffer length (or 16MB whichever is smaller). So for the term buffer
length of 64KB the max message size is therefore 8KB and the Aeron MTU for the channel must not
exceed the max message size for that channel.

The Aeron benchmark scripts use --mtu parameter to override the Aeron MTU value.

File sync level
The file sync level must be set via the following configuration properties: aeron.archive.file.sync.
level and aeron.archive.catalog.file.sync.level, where the Catalog file sync level must be equal
or higher than the Archive file sync level.

This value defines how the data in the Archive is persisted to disc:

 ▪ 0 (default) - normal write is performed (pwrite on Linux), i.e. the data is written to the page
cache and the OS is responsible for writing the dirty pages back to the disc asynchronously.

 ▪ 1 - normal write + sync file data (fdatasync on Linux), i.e. the data is written and synced to disc.

 ▪ 2 - normal write + sync file data and metadata (fsync on Linux), i.e. the data and the metadata
is written and synced to disc.

The Aeron benchmark scripts use --fsync parameter to override the file sync level.

Send vector capacity (C media driver only)
When using the C media driver it is possible to specify the size of the send (aeron.sender.
io.vector.capacity) and receive (aeron.receiver.io.vector.capacity) vectors as well the max
number of the packets that the publication can send (aeron.network.publication.max.messages.
per.send). They all default to two.

The Aeron benchmark scripts will set all of the three configuration properties to the same value as
defined by the AERON_NETWORK_PUBLICATION_MAX_MESSAGES_PER_SEND environment variable. If it is not
set then 2 is used as the default value. Increasing this default might help in the throughput tests.

https://en.wikipedia.org/wiki/Jumbo_frame
https://linux.die.net/man/2/pwrite
https://linux.die.net/man/2/fdatasync
https://linux.die.net/man/2/fsync

Aeron.io 13Aeron AWS Performance Testing

iii. Test Results - Detailed

The tables and charts below give a more detailed view of the results we achieved testing Aeron
Transport. If you have questions regarding these, please get in touch.

Table: Aeron Transport Max Throughput (* 99th percentile less than 1ms on c5n.9xlarge)

32 bytes 288 bytes 1344 bytes

Java 2.2M 400K 400K

C 1.5M 350K 300K

C with DPDK
(Aeron Premium) 8M 3M 700K

C with ATS + DPDK
(Aeron Premium) 8M 3M 700K

Aeron Premium ratio
compared with C 5.3 8.6 2.3

ii. Test Results - Summary

The results of the testing were as follows:

 ▪ Latency of 66 microseconds, dropping to 32 microseconds with Aeron Premium kernel bypass*
at 100k messages/second. This compares to 22,151 microseconds at 25k messages/second for
other commonly used messaging protocols, Aeron is 500 times faster with 4 times the message
volume.

 ▪ For encrypted transport, using Aeron Premium Transport Security (ATS) and kernel bypass, a
latency of 46 microseconds* was measured. This compares to 384 microseconds and 2,699 mi-
croseconds for other commonly used encrypted protocols*. This represents an improvement of
between 8 and 58-fold for Aeron Transport Security.

 ▪ Throughput of 350,000 messages/second with Aeron open source. With Aeron Premium,
throughput leapt eight-fold, to over 3,000,000 messages/second.

* Apart from throughput results, all Aeron results quoted relate to a round trip time at the 99th per-
centile of a 288 byte message and a rate of 100,000 messages/second

https://aeron.io/contact/

Aeron.io 14Aeron AWS Performance Testing

Figure: Aeron Transport Max Throughput for a 32-byte message with 99th percentile less than 1 millisecond
(throughput denoted in driver label in the key)

Figure: Aeron Transport Max Throughput for a 288-byte message with 99th percentile less than 1 millisecond
(throughput denoted in driver label in the key)

Aeron.io 15Aeron AWS Performance Testing

Figure: Aeron Transport Max Throughput for a 1344-byte message with 99th percentile less than 1 millisecond
(throughput denoted in driver label in the key)

Aeron.io 16Aeron AWS Performance Testing

Figure: Aeron Transport round trip latency for a 32-byte message at 100,000 messages per second

Table: Aeron Transport round trip latency @ 100,000 32 byte msg/sec (μs)

P50 P99 P999 Max

Java 35 57 73 690

C 36 57 69 274

C-DPDK 24 32 49 354

Aeron Premium ratio
compared with C 0.667 0.561 0.710 1.292

Aeron.io 17Aeron AWS Performance Testing

Figure: Aeron Transport round trip latency for a 288-byte message at 100,000 messages per second

Table: Aeron Transport round trip latency @ 100,000 288 byte msg/sec (μs)

P50 P99 P999 Max

Java 36 73 121 490

C 34 66 94 314

C-DPDK 36 43 47 283

Aeron Premium ratio
compared with C 1.06 0.65 0.50 0.90

Aeron.io 18Aeron AWS Performance Testing

Figure: Aeron Transport round trip latency for a 1344-byte message at 100,000 messages per second

Table: Aeron Transport round trip latency @ 100,000 1344 byte msg/sec (μs)

P50 P99 P999 Max

Java 41 5959 9912 10805

C 43 5832 9412 10600

C-DPDK 32 46 66 370

Aeron Premium ratio
compared with C 0.744 0.008 0.007 0.035

Aeron.io 19Aeron AWS Performance Testing

B. Aeron Cluster - High-throughput and
 low-latency with high-availability

For more information on how Aeron Cluster works, please refer to this overview.

With Aeron Cluster, we want to benchmark the latency and throughput of a round-trip response where
state is replicated across a three-node Aeron Cluster system. We’ve tested two different deployment
configurations, the first is detailed below. For the second test set-up, please see the appendix.

i. Test Set-Up 1: Cluster Placement Group - a
 set-up optimized for performance
Here, we deployed Aeron Cluster nodes in the same AWS Availability Zone (AZ). This means that
messages sent to the cluster are replicated to a quorum of other nodes within the same Availability
Zone.

This configuration gives latency benefits but it comes with a redundancy trade-off when compared to
deploying nodes across Availability Zones. When deployed across AZs, if the primary Availability Zone
is lost, the system can be brought back up from the messages replicated to a secondary AZ through
the use of Aeron Premium Cluster Warm Standby.

Figure: Aeron Cluster Test Set-up using AWS Cluster Placement Group and Aeron Cluster Standby in a
Secondary Availability Zone.

https://aeron.io/docs/

Aeron.io 20Aeron AWS Performance Testing

As with the Aeron Transport tests, our Aeron Cluster testing covered latency and throughput.

For latency, we tested the performance of Aeron Cluster at 100,000 288-byte messages per second.

For throughput, we wanted to understand the maximum throughput while still meeting a given latency
within an Availability Zone. We chose a latency ceiling of one millisecond at the 99th percentile,
stopping at throughputs that gave results above this threshold.

1. Technical Set-Up - Prerequisites

 ▪ You should be able to set-up and test Aeron Transport as described above

 ▪ Some provisioned VMs or machines - get in touch with us if you would like to use our Aeron
benchmark infrastructure provisioning modules to help with setting this up.

2. Technical Set-up Instructions

Running Aeron Cluster benchmarks requires at least 4 virtual machines to be provisioned. Follow the
instructions in the OS setup section on how to configure the operating system for those machines.

Assuming that you already have the benchmarks repository cloned (see Benchmark scripts section on
the instructions on how to do that) you can proceed with creating the following wrapper script on the
local machine in the benchmarks project (i.e. in the `aeron-benchmarks/scripts` directory).

Let’s create a file named `test-cluster.sh`.

export SSH_CLIENT_USER=<SSH user>
export SSH_CLIENT_KEY_FILE=<private SSH key file>
export SSH_SERVER_NODE=
export SSH_SERVER_USER=${SSH_CLIENT_USER}
export SSH_SERVER_KEY_FILE=${SSH_CLIENT_KEY_FILE}
export SSH_CLIENT_NODE=<SSH IP of the client node>
export SSH_CLUSTER_NODE0=<SSH IP of the node 0>
export SSH_CLUSTER_NODE1=<SSH IP of the node 1>
export SSH_CLUSTER_NODE2=<SSH IP of the node 2>
export SSH_CLUSTER_USER0=${SSH_CLIENT_USER}
export SSH_CLUSTER_USER1=${SSH_CLIENT_USER}
export SSH_CLUSTER_USER2=${SSH_CLIENT_USER}
export SSH_CLUSTER_KEY_FILE0=${SSH_CLIENT_KEY_FILE}
export SSH_CLUSTER_KEY_FILE1=${SSH_CLIENT_KEY_FILE}
export SSH_CLUSTER_KEY_FILE2=${SSH_CLIENT_KEY_FILE}
CLIENT_NODE_IP=<CLIENT_NODE_IP>
NODE0_IP=<Cluster node 0 IP>
NODE1_IP=<Cluster node 1 IP>
NODE2_IP=<Cluster node 2 IP>

JAVA_HOME=<JAVA_HOME on all nodes>
BENCHMARKS_PATH=<benchmarks path on all nodes>
DATA_DIR=<data directory for storing the Cluster log>

https://aeron.io/contact/

Aeron.io 21Aeron AWS Performance Testing

_CPU_NODE=<CPU node (socket) to run the processes on>
_NON_ISOLATED_CPU_CORES=<non-isolated CPU cores>
_DRIVER_CONDUCTOR_CPU_CORE=<CPU core to pin the ‘conductor’ thread>
_DRIVER_SENDER_CPU_CORE=<CPU core to pin the ‘sender’ thread>
_DRIVER_RECEIVER_CPU_CORE=<CPU core to pin the ‘receiver’ thread>
_ARCHIVE_RECORDER_CPU_CORE=<CPU core to pin the ‘archive-recorder’ thread>
_ARCHIVE_REPLAYER_CPU_CORE=<CPU core to pin the ‘archive-replayer’ thread>
_ARCHIVE_CONDUCTOR_CPU_CORE=<CPU core to pin the ‘archive-conductor’ thread>
_CONSENSUS_MODULE_CPU_CORE=<CPU core to pin the ‘consensus-module’ thread>
_CLUSTERED_SERVICE_CPU_CORE=<CPU core to pin the ‘echo-service’ thread>

export CLUSTER_ID=42
export CLUSTER_SIZE=3
export CLUSTER_BACKUP_NODES=0

export CLIENT_JAVA_HOME=”${JAVA_HOME}”
export CLIENT_BENCHMARKS_PATH=”${BENCHMARKS_PATH}”
export CLIENT_DRIVER_CONDUCTOR_CPU_CORE=${_DRIVER_CONDUCTOR_CPU_CORE}
export CLIENT_DRIVER_SENDER_CPU_CORE=${_DRIVER_SENDER_CPU_CORE}
export CLIENT_DRIVER_RECEIVER_CPU_CORE=${_DRIVER_RECEIVER_CPU_CORE}
export CLIENT_LOAD_TEST_RIG_MAIN_CPU_CORE=${_ARCHIVE_RECORDER_CPU_CORE}
export CLIENT_CPU_NODE=${_CPU_NODE}
export CLIENT_NON_ISOLATED_CPU_CORES=${_NON_ISOLATED_CPU_CORES}
export CLIENT_AERON_DPDK_GATEWAY_IPV4_ADDRESS=
export CLIENT_AERON_DPDK_LOCAL_IPV4_ADDRESS=
export CLIENT_EGRESS_CHANNEL=”aeron:udp?endpoint=${CLIENT_NODE_IP}:0”
export CLIENT_INGRESS_CHANNEL=”aeron:udp”

CONSENSUS_CHANNEL=”aeron:udp?term-length=64k”
_client_ingress_endpoints=””
_cluster_consensus_endpoints=””
_cluster_members=””
for ((n=0; n<CLUSTER_SIZE; n++))
do
 ip_var=”NODE${n}_IP”
 if [[“$n” -ne 0]]
 then
 _client_ingress_endpoints+=”,”
 _cluster_consensus_endpoints+=”,”
 _cluster_members+=”|”
 fi
 _client_ingress_endpoints+=”${n}=${!ip_var}:2${n}000”
 _cluster_consensus_endpoints+=”${!ip_var}:2${n}001”
 _cluster_members+=”${n},${!ip_var}:2${n}000,${!ip_var}:2${n}001,${!ip_
var}:2${n}002,${!ip_var}:2${n}003,${!ip_var}:2${n}004”

 export “NODE${n}_JAVA_HOME=${JAVA_HOME}”
 export “NODE${n}_BENCHMARKS_PATH=${BENCHMARKS_PATH}”
 export “NODE${n}_CLUSTER_DIR=${DATA_DIR}/cluster”
 export “NODE${n}_ARCHIVE_DIR=${DATA_DIR}/archive”
 export “NODE${n}_DRIVER_CONDUCTOR_CPU_CORE=${_DRIVER_CONDUCTOR_CPU_CORE}”
 export “NODE${n}_DRIVER_SENDER_CPU_CORE=${_DRIVER_SENDER_CPU_CORE}”
 export “NODE${n}_DRIVER_RECEIVER_CPU_CORE=${_DRIVER_RECEIVER_CPU_CORE}”
 export “NODE${n}_ARCHIVE_RECORDER_CPU_CORE=${_ARCHIVE_RECORDER_CPU_CORE}”
 export “NODE${n}_ARCHIVE_REPLAYER_CPU_CORE=${_ARCHIVE_REPLAYER_CPU_CORE}”
 export “NODE${n}_ARCHIVE_CONDUCTOR_CPU_CORE=${_ARCHIVE_CONDUCTOR_CPU_CORE}”
 export “NODE${n}_CONSENSUS_MODULE_CPU_CORE=${_CONSENSUS_MODULE_CPU_CORE}”
 export “NODE${n}_CLUSTERED_SERVICE_CPU_CORE=${_CLUSTERED_SERVICE_CPU_CORE}”
 export “NODE${n}_CPU_NODE=${_CPU_NODE}”
 export “NODE${n}_NON_ISOLATED_CPU_CORES=${_NON_ISOLATED_CPU_CORES}”

Aeron.io 22Aeron AWS Performance Testing

 export “NODE${n}_AERON_DPDK_GATEWAY_IPV4_ADDRESS=”
 export “NODE${n}_AERON_DPDK_LOCAL_IPV4_ADDRESS=”
 export “NODE${n}_CLUSTER_CONSENSUS_CHANNEL=${CONSENSUS_CHANNEL}”
 export “NODE${n}_CLUSTER_INGRESS_CHANNEL=aeron:udp”
 export “NODE${n}_CLUSTER_LOG_CHANNEL=aeron:udp?term-length=64m|control-
mode=manual|control=${!ip_var}:2${n}002”
 export “NODE${n}_CLUSTER_REPLICATION_CHANNEL=aeron:udp?endpoint=${!ip_
var}:2${n}022”
 export “NODE${n}_ARCHIVE_CONTROL_CHANNEL=aeron:udp?endpoint=${!ip_var}:2${n}004”
 export “NODE${n}_ARCHIVE_REPLICATION_CHANNEL=aeron:udp?endpoint=${!ip_
var}:2${n}044”
done
export CLIENT_INGRESS_ENDPOINTS=”${_client_ingress_endpoints}”
export CLUSTER_CONSENSUS_ENDPOINTS=”${_cluster_consensus_endpoints}”
export CLUSTER_MEMBERS=”${_cluster_members}”

“${DIR}/aeron/remote-cluster-benchmarks” --client-drivers “java,c” --server-drivers
“java,c” --file-sync-level 0 --mtu 1408 --context “my-cluster-test”

Now to run the script from with the `aeron-benchmarks/scripts` directory do:

$./test-cluster.sh

ii. Test Results - Summary
The results of the test were as follows:

 ▪ For latency, we measured a round trip time of 235 microseconds when using Aeron open source.
With Aeron Premium, we saw that latency almost halved - to 130 microseconds at the 99th
percentile for 100,000 messages per second of a 288-byte message.

 ▪ For throughput, we maintained over 250,000 288-byte messages a second with Aeron open source
while staying under our one millisecond threshold. This compares with over 2,000,000 messages a
second with Aeron Premium. This is an eight-fold improvement over already incredibly impressive
results.

Aeron.io 23Aeron AWS Performance Testing

iii. Test Results - Detailed
The tables and charts below give a more detailed view of the results we achieved testing Aeron
Cluster using AWS cluster placement groups. If you have questions, please get in touch.

Figure: Aeron Cluster Max Throughput for a 32-byte message with 99th percentile less than 1 millisecond
(throughput denoted in driver label in the key)

Table: Aeron Cluster Max Throughput (99th percentile less than 1ms on c5n.9xlarge)

32 bytes 288 bytes 1344 bytes

Java 500K 250K 200K

C 350K 250K 180K

C with DPDK
(Aeron Premium) 6M 2M 450K

Aeron Premium ratio
compared with C 17.1 8 2.5

https://aeron.io/contact/

Aeron.io 24Aeron AWS Performance Testing

Figure: Aeron Cluster Max Throughput for a 288-byte message with 99th percentile less than 1 millisecond
(throughput denoted in driver label in the key)

Figure: Aeron Cluster Max Throughput for a 1344-byte message with 99th percentile less than 1 millisecond
(throughput denoted in driver label in the key)

Aeron.io 25Aeron AWS Performance Testing

Figure: Aeron Cluster round trip latency for a 32-byte message at 100,000 messages per second

Table: Round trip latency @ 100,000 32 byte msg/sec (μs)

P50 P99 P999 Max

Java 107 132 150 4657

C 106 130 145 4180

C-DPDK 103 124 137 1823

Aeron Premium ratio
compared with C 0.972 0.954 0.945 0.444

Aeron.io 26Aeron AWS Performance Testing

Figure: Aeron Cluster round trip latency for a 288-byte message at 100,000 messages per second

Table: Round trip latency @ 100,000 288byte msg/sec (μs)

P50 P99 P999 Max

Java 109 235 2408 53706

C 108 239 35520 89194

C-DPDK 106 130 144 1137

Aeron Premium ratio
compared with C 0.981 0.544 0.004 0.013

Aeron.io 27Aeron AWS Performance Testing

Figure: Aeron Cluster round trip latency for a 1344-byte message at 100,000 messages per second

Table: Round trip latency @ 100,000 1344 byte msg/sec (μs)

P50 P99 P999 Max

Java 117 247 1928 8032

C 118 253 2480 20611

C-DPDK 130 162 222 22151

Aeron Premium ratio
compared with C 1.102 0.640 0.090 1.075

Aeron.io 28Aeron AWS Performance Testing

05 Testing Resources
If you need support setting up and running a test or a Proof of Concept (PoC) using Aeron we’d be
happy to help. Please get in touch with us to discuss your requirements.

Useful Links and resources:

1. Aeron Cookbook Quick Start Guide >>

2. Videos & Presentations:

 a. Fault Tolerant 24/7 Operations with Aeron Cluster >>

 b. Aeron: Open-source high-performance messaging >>

 c. 24/7 State Replication >>

https://aeron.io/contact/
https://aeron.io/docs/cluster-quickstart/cluster-quickstart-overview/
https://www.youtube.com/watch?v=H9yqzfNiEb4
https://youtu.be/tM4YskS94b0
https://www.infoq.com/presentations/replicating-state-machines/

Aeron.io 29Aeron AWS Performance Testing

Appendix
Further Aeron Cluster Testing

i. Test Set-Up 2 : Partition Placement Group - a
 set-up optimized for redundancy

The test set-up described in this appendix was also run as a part of the Aeron performance testing
on AWS.

We deployed Aeron Cluster nodes across different Availability Zones within the same region. That
means that messages sent to the cluster are replicated to a quorum of other nodes across at least
two other AZs.

This setup gives enhanced reliability with reduced RTO and RPO times, but comes with a trade-off
in performance. The latency of transmitting data to nodes in other Availability Zones is simply higher
than within a single Availability Zone (more information on the AWS AZ construct can be found here).

Figure: Aeron Cluster Test Set-up using AWS Partition Placement Group Set-up

For our throughput tests, we increased the acceptable latency threshold before we disregarded our
test results. This was simply to account for the increased network latency from having the cluster
deployed across Availability Zones. The latency threshold was set to 10 milliseconds, at the 99th
percentile.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

Aeron.io 30Aeron AWS Performance Testing

ii. Test Results - Summary
 ▪ For latency, we measure a round trip of 3,428 microseconds using Aeron open source, at the

99.9th percentile. With Aeron Premium the latency almost halved, to 2,109 microseconds, again at
the 99.9th percentile, for 100,000 messages per second of a 288-byte message.

 ▪ For throughput, with Aeron open source we sustained 250,000 288-byte messages per second.
Using Aeron Premium, throughput improved nearly 7x, to over 1,700,000 messages per second.

Aeron.io 31Aeron AWS Performance Testing

iii. Test Results - Detailed
The tables and charts below give a more detailed view of the results we achieved testing Aeron Cluster
using AWS partition placement groups. If you have questions regarding these, please get in touch.

Figure: Aeron Cluster Max Throughput using partition placement group for a 32-byte message with 99th per-
centile less than 10 milliseconds (throughput denoted in driver label in the key)

Table: Aeron Cluster Max Throughput (99th percentile less than 10ms on c5n.9xlarge)

32 bytes 288 bytes 1344 bytes

Java 500K 250K 250K

C 350K 250K 200K

C with DPDK
(Aeron Premium) 5M 1.7M 400K

Aeron Premium ratio
compared with C 14.3 6.8 2.0

https://aeron.io/contact/

Aeron.io 32Aeron AWS Performance Testing

Figure: Aeron Cluster Max Throughput using partition placement group for a 288-byte message with 99th per-
centile less than 10 milliseconds (throughput denoted in driver label in the key)

Figure: Aeron Cluster Max Throughput using partition placement group for a 1344-byte message with 99th per-
centile less than 10 milliseconds (throughput denoted in driver label in the key)

Aeron.io 33Aeron AWS Performance Testing

Figure: Aeron Cluster round trip latency using partition placement group for a 32-byte message at 100,000
messages per second

Table: Round trip Latency @ 100k 32-byte msg/sec (μs)

P50 P99 P999 Max

Java 996 2064 2082 5771

C 2054 2082 2101 5984

C-DPDK 2073 2092 2103 2400

Aeron Premium ratio
compared with C 1.009 1.005 1.001 0.401

Aeron.io 34Aeron AWS Performance Testing

Figure: Aeron Cluster round trip latency using partition placement group for a 288-byte message at 100,000
messages per second

Table: Round trip Latency @ 100k 288byte msg/sec (μs)

P50 P99 P999 Max

Java 2070 2207 3428 4489

C 2062 2195 3678 7495

C-DPDK 2074 2094 2109 2633

Aeron Premium ratio
compared with C 1.006 0.954 0.573 0.351

Aeron.io 35Aeron AWS Performance Testing

Figure: Aeron Cluster round trip latency using partition placement group for a 1344-byte message at 100,000
messages per second

Table: Round trip Latency @ 100k 1344 byte msg/sec (μs)

P50 P99 P999 Max

Java 2071 2228 3320 4714

C 995 2175 3690 7373

C-DPDK 2103 2130 2150 2523

Aeron Premium ratio
compared with C 2.114 0.979 0.583 0.342

Aeron.io 36Aeron AWS Performance Testing

Follow us on:

Adaptive builds & operates bespoke trading technology solutions across asset classes for financial services
firms wanting to own their technology stack to differentiate and compete in the long-term. Central to Adaptive’s
offering is Aeron, the global standard for high-throughput, low-latency and fault-tolerant trading systems - the
open source technology supported and sponsored by Adaptive.

Weareadaptive.com Aeron.io

November 2023

https://weareadaptive.com/
https://aeron.io/
https://twitter.com/weareadaptive
https://github.com/AdaptiveConsulting
http://linkedin.com/company/adaptive consulting-ltd

